## CHAPTER 2

## DISEASE PATTERN, TREATMENT TREND AND CLINICAL OUTCOME OF BREAST CANCER

Apart from demographics and risk factors, the clinical management of breast cancer with different cancer characteristics provide important information which can be useful in understanding the current status of breast cancer
in Hong Kong. In this chapter, clinical presentation, cancer characteristics, histological and biological characteristics as well as treatment methods of the patient cohort are studied.

## KEY FINDINGS

I. Clinical presentations

- In the cohort of 6,848 patients, $87.1 \%$ self discovered their breast cancer by chance.
- $82.1 \%$ of the patients were diagnosed at early stages (stages 0-II); 14.1\% were diagnosed at advanced stages (stages III-IV) and $3.8 \%$ were unstaged. Of them, 5,822 ( $85 \%$ ) had invasive breast cancer.
- 1,589 patients $(23.2 \%)$ were diagnosed and treated at private medical facilities; 2,797 ( $40.8 \%$ ) had their treatment at public medical facilities; 2,462 ( $36.0 \%$ ) used both private and public medical service.
- $30.8 \%$ of the patients sought medica consultation within one month of the onse of symptoms. $27.6 \%$ of the patients too more than 12 months to seek their firs medical consultation.
- Mammography was used in the diagnosis of $80.5 \%$ of the patients, while ultrasound screening was used in $74.5 \%$ and magnetic resonance imaging was used in only $6.1 \%$ of the patients.
- Malignancy was confirmed by fine needle aspiration in $49.3 \%$ of the patients, while core needle biopsy was used in $44.5 \%$ of patients and excisional biopsy was used in $14.8 \%$ of the patients.
- The tests most commonly used in cancer staging in the patient cohort were chest $X$-rays / abdominal ulstrasound ( $64.5 \%$ ), PET scan $(17.7 \%)$ and bone scan (3.8\%).
- Tumour size ranged from $0.01-22 \mathrm{~cm}$. The mean tumour size of invasive breast cancer in selfdetected cases vs screen-detected cases: 2.3 cm vs. 1.9 cm . Nearly half $(48.1 \%)$ of the patients had tumours larger than 2 cm .
- The most common biological subtype was ER+PR+HER2- (47.3\%), while ER-PR+HER2+ ( $1.1 \%$ ) was the least common. $12.6 \%$ of the cases were triple negative (ER-PR-HER2-); 11.4\% were ER+PR+HER2+; $4.7 \%$ were ER+PR-HER2+; 1.1\% were ER-PR+HER2+ and $10.5 \%$ were ER-PR-HER2+.
- Of the patients, $12.1 \%$ (829) had in situ breast cancer with mean tumour size of 2.14 cm and a size range of $0.02-9 \mathrm{~cm} .42 .3 \%$ of patients had in situ tumour larger than 2 cm .
- $77.2 \%$ of in situ breast cancer cases were ER positive; $67.2 \%$ were PR positive; $30.9 \%$ were HER2 positive.
II. Treatment
- Within the patient cohort, the most common combination of treatments was surgery chemotherapy, endocrine therapy and radiotherapy (30.0\%).
- The most common combination used for stage 0 cases was surgery and radiotherapy (42.3\%).



### 2.1 Clinical presentation

Most patients ( $87.1 \%$ ) self-detected their cancers by chance (Figure 2.1), highlighting low awareness of regular screening , reast cancer when no symptoms are present. The low factor for the delayed diagnosis in Hong Kong.

The rate of detecting breast cancer through mammography and other screening methods was higher in private healthcare patients ( $20.5 \%$ ) than in public healthcare patients (9.2\%).

The most common symptom in self-detected cases was a painless lump (92.7\%) (Figure 2.2).


Figure 2.1 Mode of first breast cancer detection in the patient cohort $(\mathrm{N}=6,140)$

BSE: Breast self-examination; CBE: Clinical breast examination USG: Ultrasound screening MRI: Magnetic resonance imaging

BSE: Breast self-examination; CBE: Clinical breast examination; USG: Ultrasound screening; MRI: Magnetic resonance imaging


Figure 2.2 Major symptoms of self-detected breast cancer ( $\mathrm{N}=5,361$ )
2.1.1 Duration from onset of symptoms to first medical consultation

After self-detection, only $30.8 \%$ of the patients sought their medical consultation within one month of the onset of symptoms (Table 2.2). Alarmingly $27.6 \%$ of the patients took more than 12 months to seek their first medical consultation. A qualitative study in 2009 on Hong Kong Chinese women found that patients with painless lump and atypical symptoms delayed their medical consultation unt symptoms intensified or until they discussed with someone who has experience with breast cancer. The barriers to timely medical consultation included financial difficulties, lack of access and time and embarrassment ${ }^{22}$.

Table 2.2 Duration from onset of symptoms to firs medical consultation for patients who self-detected their cancers $(\mathrm{N}=2,545)$

|  | Number | $(\%)$ |
| :--- | ---: | ---: |
| Less than 1 month | 784 | $(30.8)$ |
| 1-3 months | 743 | $(29.2)$ |
| 4-12 months | 315 | $(12.4)$ |
| More than 12 months | 703 | $(27.6)$ |

More private ( $37.4 \%$ ) and mixed healthcare patients $(32.5 \%)$ sought their first medical consultation in less than one month from the onset of symptoms, compared with the public healthcare patients ( $22.1 \%$ ). Additionally, more public healthcare patients ( $30.1 \%$ ) delayed their first, medical consultation for more than 12 months after the medical consultation for more than onset of symptoms than private ( $24.6 \%$ ) and mixed (28.1\%) healthcare patients.

Table 2.3 Duration from onset of symptoms to first medical consultation for patients who self-detected their cancers by type of medical service ( $\mathrm{N}=2,545$ )

|  | Private sector <br> $(\mathbf{N}=\mathbf{8 3 3})$ | Public sector <br> $(\mathbf{N}=\mathbf{1 , 3 3 5})$ | Mixed private/public medical <br> service users $(\mathbf{N}=\mathbf{1 , 2 9 9})$ |
| :--- | :---: | :---: | :---: |
|  | Number (\%) | Number (\%) | Number (\%) |
| Less than 1 month | $305(37.4)$ | $175(22.1)$ | $304(32.5)$ |
| 1-3 months | $216(26.5)$ | $245(30.9)$ | $282(30.1)$ |
| 4-12 months | $94(11.5)$ | $134(16.9)$ | $87(9.3)$ |
| More than 12 months | $201(24.6)$ | $239(30.1)$ | $263(28.1)$ |

Among the patients diagnosed at stage IV, $40.8 \%$ took more than 12 months before seeking first consultation after symptom onset, and $77.5 \%$ took more than one month
to seek first medical consultation, suggesting the majority of stage IV cancer could potentially have been caught at earlier stages.

Table 2.4 Duration from onset of symptoms to first medical consultation for patients who self-detected their cancers by cancer stage at diagnosis ( $\mathrm{N}=2,472$ )

|  | $\begin{gathered} \text { Stage 0 } \\ (\mathrm{N}=255) \\ \text { Number (\%) } \end{gathered}$ | $\begin{gathered} \text { Stage I } \\ (\mathrm{N}=763) \\ \text { Number (\%) } \end{gathered}$ | $\begin{gathered} \text { Stage IIA } \\ \text { (N=746) } \\ \text { Number (\%) } \end{gathered}$ | $\begin{gathered} \hline \text { Stage IIB } \\ (\mathrm{N}=328) \\ \text { Number (\%) } \end{gathered}$ | $\begin{gathered} \text { Stage III } \\ (\mathrm{N}=331) \\ \text { Number (\%) } \end{gathered}$ | $\begin{gathered} \text { Stage IV } \\ (\mathrm{N}=49) \\ \text { Number (\%) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Less than 1 month | 77 (30.3) | 261 (34.2) | 248 (33.2) | 90 (27.4) | 84 (25.4) | 11 (22.4) |
| 1-3 months | 65 (25.5) | 207 (27.1) | 235 (31.5) | 108 (32.9) | 101 (30.5) | 10 (20.4) |
| 4-12 months | 33 (12.9) | 87 (11.4) | 78 (10.5) | 36 (11.0) | 60 (18.1) | 8 (16.3) |
| More than 12 months | 80 (31.4) | 208 (27.3) | 185 (24.8) | 94 (28.7) | 86 (26.0) | 20 (40.8) |



Figure 2.3 Laterality of 6,848 breast cancer cases
n both left and right breasts, the most common location of breast cancer was the upper outer quadrant (44.1-48.3\%) while breast cancer was less likely to occur in the lowe inner quadrant (7.6-9.4\%) (Figure 2.4).


Figure 2.4 Locations of breast cancer ( $\mathrm{N}=6,848$
UOQ: Upper outer quadrant UIQ: Upper inner quadran LOQ: Lower outer quadrant LIQ: Lower inner quadrant

### 2.2.1 Diagnostic tests for breast cancer

After a lump or other sign of breast cancer is detected, several tests are performed to diagnose breast cancer. Mammography (MMG) is currently recognised to be the "gold standard" of breast imaging test, while breast ultrasound imaging (USG) and magnetic resonance imaging (MRI) are used for further investigation. Fine needle maging (MRI) are used for further investigation. Fine needle confirm malignancy of breast lesion.

MMG was used in the diagnosis of $80.5 \%$ of patients, while USG was used in $74.5 \%$ and MRI was used in only $6.1 \%$ of patients (Table 2.3).

BIRADS (Breast Imaging Reporting and Data System) is a classification used by radiologists to determine the likelihood of diagnosing malignancy in breast images. BIRADS classification of the patient cohort demonstrated that sensitivity of USG $(86.4 \%)$ is higher than that of MMG $77.5 \%$ ). MRI had the best sensitivity, however due to the $(77.5 \%)$. MRI had the best sensitivity, however cue to the
low number of MRI conducted in the patients, a comparison of MRI with other techniques cannot be made.

To confirm malignancy, FNA was used in $49.3 \%$ of the patients, while CNB and excisional biopsy were used in $44.5 \%$ and $14.8 \%$ of the patients respectively. The overall sensitivity of CNB was higher than FNA, and excisional biopsy had 100\% sensitivity (Table 2.5).

Table 2.5 Sensitivity and diagnostic results of breast imaging tests

|  | Mammography <br> $(\mathrm{N}=5,512)$ | Breast ultrasound <br> $(\mathrm{N}=5, \mathbf{1 0 0})$ | MRI <br> $(\mathrm{N}=419)$ |  |
| :--- | :---: | :---: | :---: | :---: |
| Proportion of subjects using the diagnostic test | $80.5 \%$ | $74.5 \%$ | $6.1 \%$ |  |
| Overall sensitivity* | $77.5 \%$ | $86.4 \%$ | $95.0 \%$ |  |
| BIRADS category |  |  |  |  |
| Diagnostic/ malignant (BIRADS 5) | $1,600(29.0 \%)$ | $1,774(34.8 \%)$ | $280(66.8 \%)$ |  |
| Suspicious abnormality (BIRADS 4) | $2,673(48.5 \%)$ | $2,630(51.6 \%)$ | $118(28.2 \%)$ |  |
| Probably benign (BIRADS 3) | $421(7.6 \%)$ | 401 | $(7.9 \%)$ | 8 |
| Benign (BIRADS 2) | 340 | $(6.9 \%)$ | 154 | $(3.0 \%)$ |
| Normal (BIRADS 1) | 459 | $(8.3 \%)$ | 133 | $(2.6 \%)$ |
| Incomplete (BIRADS 0) | 19 | $(0.3 \%)$ | 8 | $(0.2 \%)$ |

MRI: Magnetic resonance imaging; BIRADS: Breast Imaging Reporting and Data System
*Sensitivity: Number of true positives divided by total number of patients who have taken the test

Table 2.6 Sensitivity and diagnostic results of breast tissue biopsies

|  | FNA <br> $(\mathbf{N}=3,374)$ | CNB <br> $(\mathbf{N}=\mathbf{3 , 0 4 8})$ | Excisional biopsy <br> $(\mathbf{N}=\mathbf{1 , 0 1 4})$ |  |
| :--- | :---: | :---: | :---: | :---: |
| Proportion of subjects using the diagnostic test | $49.3 \%$ | $44.5 \%$ | $14.8 \%$ |  |
| Overall sensitivity* | $89.3 \%$ | $98.6 \%$ | $100.0 \%$ |  |
| Class |  |  |  |  |
| Diagnostic/ malignant (Class V) | 1,979 | $(58.7 \%)$ | 2,863 | $(93.9 \%)$ |
| Suspicious (Class IV) | 668 | $(19.8 \%)$ | 92 | $(3.0 \%)$ |
| Atypical (Class III) | 367 | $(10.9 \%)$ | 51 | $(1.7 \%)$ |
| Benign (Class II) | 192 | $(5.7 \%)$ | 25 | $(0.8 \%)$ |
| Scanty benign (Class I) | 115 | $(3.4 \%)$ | 15 | $(0.5 \%)$ |
| Incomplete (Class 0) | 53 | $(1.6 \%)$ | 2 | $(0.1 \%)$ |

FNA: Fine needle aspiration; CNB: Core needle biopsy;
*Sensitivity: Number of true positives divided by total number of patients who have taken the test


Asian women are known to have denser breasts than western women. Indeed, $76 \%$ of the patient cohort had either heterogeneous or extreme density (Figure 2.5).


Figure 2.5 Mammographic density of breasts of the patients ( $\mathrm{N}=3,852$ )

### 2.2.2 Methods of cancer staging

After diagnosis, cancer staging is conducted to detect any distant metastasis. The commonly used tests include chest X-rays, abdominal ultrasound, PET scans, MRIs, bone scans and CT scans. Around $15 \%$ of the patients did not have any tests for cancer staging. The most commonly used cancer tests for cancer staging. The most commonly used cancer
staging tests were chest X-rays / abdominal ulstrasound $(64.5 \%)$ PET scan ( $17.7 \%$ ) and bone scan ( $3.8 \%$ ) (Table (64.5\%), PET scan ( $17.7 \%$ ) and bone scan (3.8\%) (Table 2.8).

Table 2.8 Cancer staging in 5,798 breast cancer

| patients |  |
| :--- | :--- |
| Type of cancer staging method |  | No cancer staging 901 (15.5) Chest X-rays (CXR) /Abdominal ultrasound (USG Abd) 3 3,739 (64.5) Positron emission tomography scan (PET scan) 1,027 (17.7) Bone scan 223 (3.8) Computed tomography of body parts*

23 (3.8) Magnetic resonance imaging whole body (MR1 whole body) 36 (0.6) Unspecified

616 (10.6)

* Body parts include abdomen, thorax, pelvis, brain

Of the 6,848 breast cancer cases, $82 \%$ were diagnosed at early stages (stages $0-111$; $14 \%$ were found to be at advanced stages (stages III-IV) (Figure 2.6).


Figure 2.6 Cancer stage at diagnosis in breast cancer patients ( $\mathrm{N}=6,848$ )

### 2.2.3 Characteristics of invasive breast cancer

Of the 5,822 patients $(85 \%)$ diagnosed with invasive breast cancer, majority were diagnosed at stage I ( $35.1 \%$ ) and stage II $(48.5 \%)$. Tumour size ranged from $0.01-22 \mathrm{~cm}$. The mean tumour size of invasive breast cancer in self-detected cases vs. screen-detected cancers: 2.3 cm vs. 1.9 cm . Around half $(48.1 \%)$ of the patients had tumours larger than 2 cm .


Figure 2.7 Distribution of tumour size of invasive breast cancer $(\mathrm{N}=5,822)$

Of the invasive breast cancer cases, $56.3 \%$ had no lymph node involvement. $22.2 \%$ had $1-3$ positive nodes, and $13.8 \%$ had 4 or more positive lymph nodes. $4.9 \%$ of patients had nodal micrometastasis with size between 0.2 $2 \mathrm{~mm} .2 .8 \%$ had isolated tumour cells (ITC) (Figure 2.8).


Figure 2.8 Number of positive lymph nodes in invasive breast cancer $(\mathrm{N}=4,044)$

### 2.2.4 Characteristics of in situ breast cancer

Of the breast cancer patients, $12.1 \%$ (829) had in situ breast cancer, with mean tumour size of 2.14 cm and a size range $0.02-9 \mathrm{~cm} .42 .3 \%$ of patients had in situ tumours larger than 2 cm (Figure 2.9).


Figure 2.9 Distribution of tumour size of in situ breast cancer ( $\mathrm{N}=743$ )

### 2.3 Histological and biological characteristics

### 2.3.1 Invasive breast cance

After diagnosis and staging of invasive breast cancer, histological analysis is conducted. Histological characteristics, grading, multifocality and multicentricity of invasive breast cancer cases can be found in Table 2.9.

| Table 2.9 Histological type, grading, multifocality and multicentricity of invasive breast cancer ( $\mathrm{N}=5,822$ ) |  |  | Grade |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  |  | Grade 2 | 2,360 | (40.5) |
|  | Number | (\%) | Grade 3 | 1,976 | (33.9) |
| Histological type |  |  | Unknow | 535 | (9.2) |
| Ductal | 4,953 | (85.0) | Lymphovascular invasion | 1,732 | (29.7) |
| Lobular | 241 | (4.1) | Multifocality | 641 | (11.0) |
| Mucinous (colloid) | 227 | (3.9) | Number of foci |  |  |
| Papillary | 58 | (1.0) | 2 | 327 | (51.0) |
| Tubular | 55 | (0.9) | 3-4 | 137 | (21.4) |
| Medullary | 41 | (0.7) | $\geq 5$ | 80 | (12.5) |
| Mixed ductal and lobular | 37 | (0.6) | Unknown | 97 | (15.1) |
| Borderline/ malignant phyllodes | 24 | (0.4) | Multicentricity | 170 | (2.9) |
| Micropapillary | 20 | (0.3) | Number of quadrants |  |  |
| Metaplastic carcinoma | 16 | (0.3) | 2 | 140 | (82.4) |
| Apocrine carcinoma | 11 | (0.2) | 3 | 13 | (7.6) |
| Cribriform carcinoma | 7 | (0.1) | 4 | 13 | (7.6) |
| Adenoid cystic carcinoma | 6 | (0.1) | Unknown | 4 | (2.4) |

Biologically, breast cancer can be classified into fou subtypes: luminal A, luminal B, C-erB2/HER2 positive and triple negative.

Of the invasive breast cancer cases, $75.5 \%$ were $\operatorname{ER}$ positive while $63 \%$ were PR positive, and $22.3 \%$ were HER2 positive. Of the $26.9 \%$ found to be weakly HER2 positive by immunohistochemistry, only $3.5 \%$ were found to be positive by FISH/CISH test (Table 2.10).

Table 2.10 Biological characteristics of invasive

|  | Number | (\%) |
| :---: | :---: | :---: |
| Oestrogen receptor (ER) ( $\mathrm{N}=5,616,96.5 \%$ ) |  |  |
| Positive | 4,241 | (75.5) |
| Negative | 1,375 | (24.5) |
| Progesterone receptor (PR) ( $\mathrm{N}=5,593,96.1 \%$ ) |  |  |
| Positive | 3,523 | (63.0) |
| Negative | 2,070 | (37.0) |
| c-erbB2/ HER2 ( $\mathrm{N}=5,421,93.1 \%$ ) |  |  |
| Positive (IHC Score 3) | 1,209 | (22.3) |
| Weakly positive (IHC Score 2) | 1,459 | (26.9) |
| FISH / CISH + ve | 50 | (3.4) |
| Negative (IHC Score 0 / 1) | 2,753 | (50.8) |
| Ki-67 index ( $\mathrm{N}=3,184,54.7 \%$ ) |  |  |
| <14\% | 1,445 | (45.4) |
| 14-49\% | 1,349 | (42.4) |
| $\geq 50 \%$ | 390 | (12.2) |

The most common biological subtype in the cohort was ER+PR+HER2- (47.3\%), while ER-PR+HER2 + (1.1\%) was the least common. 12.6\% of cases were triple negative (ER-PR-HER2-) (Table 2.11).

## Table 2.11 Biological subtypes of oestrogen

 receptors, progesterone receptors and HER2 receptors in 5,822 invasive breast cancer cases|  | Number | (\%) |
| :--- | ---: | ---: |
| ER+PR+HER2+ | 517 | $(11.4)$ |
| ER+PR+HER2- | 2,141 | $(47.3)$ |
| ER+PR-HER2+ | 212 | $(4.7)$ |
| ER+PR-HER2- | 471 | $(10.4)$ |
| ER-PR+HER2+ | 51 | $(1.1)$ |
| ER-PR+HER2- | 89 | $(2.0)$ |
| ER-PR-HER2+ | 474 | $(10.5)$ |
| ER-PR-HER2- | 571 | $(12.6)$ |

ER+: Oestrogen receptor positive ER-: Oestrogen receptor negative PR+: Progesterone receptor positive PR-: Progesterone receptor negative HER2+: Human epidermal growth factor receptor 2 positive ER2-: Human epidermal growth factor receptor 2 negative

[^0]
### 2.3.2 In situ breast cancer

Histological characteristics, grading, multifocality and multicentricity of in situ breast cancer cases can be found in Table 2.12. Microcalcification was found on the mammograms of $51.3 \%$ of the in situ breast cancer cases
$77.2 \%$ of in situ breast cancer were ER positive while 67.2\% were PR positive. $32.7 \%$ were HER2 positive (Table 2.13).

Table 2.13 Biological characteristics of in situ breast cancer ( $\mathrm{N}=829$ )

|  | Number | (\%) |
| :---: | :---: | :---: |
| Oestrogen receptor (ER) ( $\mathrm{N}=623,75.2 \%$ ) |  |  |
| Positive | 481 | (77.2) |
| Negative | 142 | (22.8) |
| Progesterone receptor (PR) ( $\mathrm{N}=616,74.3 \%$ ) |  |  |
| Positive | 414 | (67.2) |
| Negative | 202 | (32.8) |
| c-erbB2/ HER2 ( $\mathrm{N}=589,71.0 \%$ ) |  |  |
| Positive (IHC score 3) | 182 | (30.9) |
| Weakly positive (IHC score 2) | 163 | (27.7) |
| FISH / CISH +ve | 3 | (1.8) |
| Negative (IHC score 0/1) | 244 | (41.4) |
| Ki-67 index ( $\mathrm{N}=495,59.7 \%$ ) |  |  |
| <14\% | 344 | (69.5) |
| 14-49\% | 135 | (27.3) |
| $\geq 50 \%$ | 16 | (3.2) |

Table 2.12 Histological type, grade, multifocality and multicentricity of in situ breast cancer ( $\mathrm{N}=829$ )

|  | Number | (\%) |
| :---: | :---: | :---: |
| Histological type |  |  |
| Ductal | 760 | (91.7) |
| Lobular | 12 | (1.4) |
| Mixed | 23 | (2.8) |
| Others | 22 | (2.7) |
| Unknown | 12 | (1.4) |
| Necrosis | 370 | (44.6) |
| Nuclear Grade |  |  |
| Low | 178 | (21.5) |
| Intermediate | 264 | (31.8) |
| High | 326 | (39.3) |
| Unknown | 61 | (7.4) |
| Multifocality | 100 | (12.1) |
| Number of foci |  |  |
| 2 | 51 | (51.0) |
| 3 | 8 | (8.0) |
| 4 or more | 5 | (5.0) |
| Unknown | 36 | (36.0) |
| Multicentricity | 13 | (1.6) |
| Number of quadrants |  |  |
| 2 | 9 | (69.2) |
| 3 | 2 | (15.4) |
| Unknown | 2 | (15.4) |

### 2.4 Treatment methods

Treatment is the most important part of a patient's recovery from breast cancer, and the success of treatment is strongly dependent on the cancer stage at diagnosis, timely medical consultation, and tumour characteristics.

Out of the 6,848 patients, 1,589 (23.2\%) were diagnosed and treated at private medical facilities; 2,797 ( $40.8 \%$ ) had their treatment at public medical facilities and 2,46 ( $36.0 \%$ ) used both private and public medical facilities.

### 2.4.1 Surgical treatment

Almost all patients underwent surgery as part of their treatment for breast cancer. $60.5 \%$ of the patients received surgery in private healthcare facilities while $39.5 \%$ of patients underwent surgery at public healthcare facilities.

Of the patients, $37 \%$ underwent breast conserving surgery while $61.2 \%$ underwent mastectomy. The most common type of mastectomy was total mastectomy ( $92.8 \%$ ), followed by skin sparing ( $6 \%$ ) and nipple or areolar sparing (1\%). Only $15.3 \%$ underwent some form of reconstruction surgery (Table 2.14).

Sentinal node biopsy has been shown to reduce morbidity such as lymphoedema during recovery from breast cancer Of the $49.2 \%$ of patients who underwent sentinel node biopsy, only $16.6 \%$ had received axillary dissection as well. However, $50.5 \%$ of the patients were treated with axillary dissection only.

Table 2.14 Types of surgical operations in the patient cohort ( $\mathrm{N}=6,837$ )

|  |  |  |
| :--- | ---: | ---: |
| No surgery | Number | $(\%)$ |
| Breast conserving surgery | 111 | $(1.6)$ |
| Mastectomy | 4,533 | $(37.0)$ |
| Unknown | 9,184 | $(61.2)$ |
| Mastectomy (N=4,184) |  | $(0.1)$ |
| Total mastectomy | 3,884 | $(92.8)$ |
| Skin sparing | 249 | $(6.0)$ |
| Areolar sparing | 9 | $(0.2)$ |
| $\quad$ Nipple sparing | 32 | $(0.8)$ |
| $\quad$ Unknown | 10 | $(0.2)$ |
| Reconstruction (N=641) |  |  |
| $\quad$ TRAM flap | 385 | $(60.1)$ |
| Implant | 152 | $(23.7)$ |
| LD flap | 46 | $(7.2)$ |
| LD flap \& implant | 47 | $(7.3)$ |
| $\quad$ Unknown | 11 | $(1.7)$ |
| Nodal surgery (N=6,259) |  |  |
| $\quad$ Sentinel node biopsy | 2,039 | $(32.6)$ |
| Axillary dissection | 3,162 | $(50.5)$ |
| Sentinel node biopsy \& axillary dissection | 1,040 | $(16.6)$ |
| Unknown | 18 | $(0.3)$ |

## Breast surgery

The only patient aged under 20 underwent breast conserving surgery. While $84.1 \%$ of those over 80 underwent mastectomy. A trend of increased mastectomy and reduced breast conserving surgery towards increasing ages was observed (Figure 2.10). Breast reconstruction as expected was more common among younger women, and the percentage of reconstructive surgeries decreased with increasing age.


Figure 2.10 Type of surgery by age group $(\mathrm{N}=6,500)$ BCS: Breast conserving surgery; MTX: Mastectomy


Figure 2.11 Type of surgery by tumour size ( $\mathrm{N}=5,607$ ) BCS: Breast conserving surgery; MTX: Mastectomy

Additionally, it was observed that rate of mastectomy increased and the rate of breast conserving surgery dropped with increasing cancer stage. Surprisingly, $44.6 \%$ of the patients with stage 0 disease underwent mastectomy. However, no trend was observed in the relationship between reconstuction rate and cancer stage, suggesting that cancer stage was not an important factor in the decision making process for reconstructive surgery (Figure 2.12),


Figure 2.12 Type of surgery by cancer stage ( $\mathrm{N}=6,507$ ) BCS: Breast conserving surgery; MTX: Mastectomy

Of the patients who used private health care services, $46.3 \%$ underwent breast conserving surgery. Of the patients using public health care services, only $25.3 \%$ had breast conserving surgery probably because their tumour sizes were so large that lumpectomy was not an option. Of the were so large that lumpectomy was not an option. Of the underwent reconstruction surgery while $7.9 \%$ underwent rention sugery in public heath care (Figur 2.13).


Figure 2.17 Distribution of tumour size in in situ cancer with negative or positive nodal status

Analysis of number of positive nodes by type of nodal surgery revealed that $48.8 \%$ of patients who underwent the more morbid axillary dissection had no positive nodes, while $4.8 \%$ of patients who had sentinal node biopsy only had 1 or more positive nodes.


Figure 2.18 Number of positive nodes by type of nodal surgery
AD: Axillary dissection; SLN: Sentinel node biopsy

### 2.4.2 Chemotherapy

Chemotherapy is an important part of treatment for breast cancer. In the patient cohort, 4,255 (62.1\%) patients were treated with chemotherapy. Of them, $3,873(91.0 \%)$ were adjuvant; 313 ( $7.4 \%$ ) were neoadjuvant and 69 ( $1.6 \%$ ) were palliative.

Majority of the patients ( $80 \%$ ) received chemotherapy in public medical facilities while $20 \%$ received chemotherapy public med calical facilities 172 ( $4.0 \%$ ) patients received in private medical facikes. 72 (4.0\%) patients rece

Less than half ( $41.3 \%$ ) of the patients diagnosed at stage I breast cancer underwent chemotherapy while most $83.8 \%$ -93.8\%) of the patients disgnosed at stage II or higher stage underwent chemotherapy (Figure 2.19).

## 

Figure 2.19 Chemotherapy treatment in patients at different cancer stages $(\mathrm{N}=\mathbf{6}, 440)$


Figure 2.20 Type of chemotherapy regimens in patients by cancer stage ( $\mathrm{N}=3,868$ )

[^1]

Figure 2.21 Radiotherapy rate in patients at different cancer stages ( $\mathrm{N}=6,371$ )

Most of the patients who underwent breast conserving surgery had radiotherapy afterwards (94.3\%) while around half of the patients who underwent mastectomy had radiotherapy ( $46.7 \%$ ). The distribution of cancer stages in patients treated with mastectomy and radiotherapy was shown in Figure 2.22.


Figure 2.22 Distribution of cancer stages in patients treated with mastectomy and radiotherapy ( $\mathrm{N}=1,774$ )

The most common target volume for patients who underwent breast conserving surgery was breast only ( $54.7 \%$ ). For the patients who underwent mastectomy, it was chest wall and regional lymph node basin (48.8\%) (Table 2.15).

Table 2.15 Irradiated regions among the patients receiving radiotherapy ( $\mathrm{N}=\mathbf{4}, \mathbf{2 6 6}$ )

|  | $\begin{gathered} \text { Total } \\ (\mathrm{N}=4,266) \end{gathered}$ |  | Breast Conserving Surgery ( $\mathrm{N}=2,329$ ) |  | Mastectomy$(\mathrm{N}=1,896)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Target volume | Numb | er (\%) | Numb | (\%) | Num | er (\%) |
| Breast | 1,285 | (30.1) | 1,274 | (54.7) | - |  |
| Breast + regional nodes* | 216 | (5.1) | 203 | (8.7) | - |  |
| Chest wall | 451 | (10.6) | - |  | 448 | (23.6) |
| Chest wall + regional nodes* | 925 | (21.7) | - |  | 925 | (48.8) |
| Axilla | 6 | (0.1) | 3 | (0.1) | 2 | (0.1) |
| SCF | 14 | (0.3) | 3 | (0.1) | 11 | (0.6) |
| Axilla + SCF | 6 | (0.1) | 1 | (0.0) | 5 | (0.3) |
| IMC | 2 | (0.0) | 1 | (0.0) | 1 | (0.1) |
| IMC + SCF | 2 | (0.0) | 0 | (0.0) | 2 | (0.1) |
| Unspecified | 1,344 | (31.5) | 844 | (36.2) | 493 | (26.0) |

* Regional nodes: Axilla; IMC: Internal mammary chain; SCF: supraclavicular fossa


### 2.4.4 Endocrine therapy

4,512 (65.9\%) patients were treated with endocrine therapy Among them, 4,416 (97.9\%) were adjuvant; 17 (0.4\%) were neoadjuvant and $79(1.8 \%)$ were palliative. $78.9 \%$ of patients received endocrine treatment at public health care facilities while $21.1 \%$ received endocrine treatment private health care facilities.
$21.8 \%$ of patients with stage 0 disease underwent endocrine . The use orrine herapy the use the from $73.1 \%$ increay. stage I patients to $82.9 \%$ in stage IV patients (Figure 2.23).


Figure 2.23 Endocrine therapy rates in patients by cancer stage ( $\mathrm{N}=6,403$ )

Figure 2.24 Forms of endocrine therapy used in patients by age group ( $\mathrm{N}=4,183$ )

TMX: Tamoxifen; Al: Aromatase inhibitors
$37(0.9 \%)$ patients had ovarian ablation $\pm$ TMX/AI which is not included in Figure 2.24.

### 2.4.5 Targeted therapy

Of the patient cohort, $440(6.4 \%)$ patients were treated with targeted therapy. Among them, 396 (90.0\%) were adjuvant, 35 (7.9\%) were neoadjuvant, and $9(2.0 \%)$ were palliative. $75.1 \%$ of patients received targeted therapy at public medical facilities, while $24.9 \%$ received targeted therapy in private medical facilities.

Use of targeted treatment increased with increasing cancer stage from $3.1 \%$ for patients diagnosed at stage I to $14.8 \%$ for patients diagnosed at stage III. $13.8 \%$ of stage IV patients also underwent targeted therapy (Figure 2.25).


Figure 2.25 Targeted therapy rate in the patients by cancer stage $(\mathbf{N}=6,449)$

The most common drug used for targeted therapy was Trastuzumab (94.1\%).


Figure 2.26 Type of drugs used for targeted therapy in patients

### 2.4.6 Complementary and alternative therapies

Complementary and alternative therapies were used by $33.4 \%$ of patients. Among them, 2,169 (94.8\%) were adjuvant, 103 (4.5\%) were neoadjuvant and 16 ( $0.7 \%$ ) were palliative.
$72.4 \%$ of patients resorted to Chinese medicine, while $35.4 \%$ of patients took health food / supplements (Figure 2.27


Figure 2.27 Type of complementary and alternative therapies used in 2,288 patients
Others include: Acupuncture, moxibustion, naturopathy,
Qigong, Tai Chi, yoga, et

### 2.4.7 Multimodality treatment

Within the patient cohort, the most common combination of treatments was surgery, chemotherapy, endocrine therapy and radiotherapy ( $30.0 \%$ ), and the least common combination of treatments was chemotherapy, targeted therapy and radiotherapy, which was only used by one patient who was diagnosed at stage IV.

The most common combination used for stage 0 disease was surgery and radiotherapy ( $42.3 \%$ ). The most common treatment combination used by patients of stage I disease was surgery, endocrine therapy and radiotherapy (24.8\%), while the combination of surgery, chemotherapy, radiotherapy and endocrine therapy was most commonly used by patients of stage II, III and IV disease (Figure 2.16)

Table 2.16 Most common treatment combinations received by patients by cancer stages

| Combination |  |  |  | Stage (\%) |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { OT } \\ & \hline \vee \end{aligned}$ | $\begin{aligned} & \text { Ст вт } \\ & \hline V \end{aligned}$ | $\frac{\mathrm{ET}}{V}$ | $\frac{\mathrm{RT}}{V}$ | 0 |  | I |  | IIA |  | IIB |  | III |  | IV |  | Total |
|  |  |  |  | 0 | (0.0) | 299 | (15.2) | 653 | (34.8) | 416 | (49.9) | 478 | (59.0) | 34 | (30.6) | 1,880 (30.0) |
| $\checkmark$ | $\checkmark$ | $\checkmark$ |  | 0 | (0.0) | 206 | (10.5) | 395 | (21.0) | 113 | (13.5) | 25 | (3.1) | 10 | (9.0) | 749 (11.9) |
| $\checkmark$ |  | $\checkmark$ | $\checkmark$ |  | (11.7) | 487 | (24.8) | 110 | (5.9) | 27 | (3.2) | 26 | (3.2) | 5 | (4.5) | 735 (11.7) |
| $\checkmark$ |  | $\checkmark$ |  | 63 | (9.3) | 414 | (21.1) | 131 | (7.0) | 25 | (3.0) | 11 | (1.4) | 0 | (0.0) | 644 (10.3) |
| $\checkmark$ | $\checkmark$ |  | $\checkmark$ | 0 | (0.0) | 128 | (6.5) | 241 | (12.8) | 136 | (16.3) | 124 |  | 5 | (4.5) | 634 (10.1) |
| $\checkmark$ |  |  | $\checkmark$ | 288 | (42.3) | 119 | (6.1) | 24 | (1.3) | 13 | (1.6) | 10 | (1.2) | 0 | (0.0) | 454 (7.2) |
| $\checkmark$ |  |  |  | 242 | (35.5) | 137 | (7.0) | 39 | (2.1) | 7 | (0.8) | 3 | (0.4) | 0 | (0.0) | 428 (6.8) |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | 20 | (18.0) | 20 (0.3) |

[^2]Table 2.18 Sites involved in locoregional recurrence in patients by type of surgery received

| Locoregional recurrence Sites involved | Type of surgery received |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BCS <br> N (\%) <br> ( $\mathrm{N}=75$ ) |  | $\begin{gathered} \text { MTX } \\ \mathrm{N}(\%) \\ (\mathrm{N}=99) \end{gathered}$ |  | $\begin{gathered} \text { MTX }+ \text { reconstruction } \\ \mathrm{N}(\%) \\ (\mathrm{N}=24) \end{gathered}$ |  | Not done <br> N (\%) <br> ( $\mathrm{N}=2$ ) | Unknown <br> N(\%) <br> ( $\mathrm{N}=30$ ) | Total N (\%) ( $\mathrm{N}=230$ ) |
| Breast | 64 | (85.3) | 0 | (0.0) | 1 | (4.2) | 0 (0.0) | 27 (90.0) | 92 (40.0) |
| Chest wall | 0 | (0.0) | 47 | (47.5) | 7 | (29.2) | 0 (0.0) | 4 (13.3) | 58 (25.2) |
| Skin | 2 | (2.7) | 5 | (5.1) | 1 | (4.2) | 0 (0.0) | 1 (3.3) | 9 (3.9) |
| Axilla | 7 | (9.3) | 23 | (23.2) | 9 | (37.5) | 0 (0.0) | 2 (6.7) | 41 (17.8) |
| Supraclavicular | 6 | (8.0) | 24 | (24.2) | 4 | (16.7) | 1 (50.0) | 3 (10.0) | 38 (16.5) |
| Internal mammary node | 1 | (1.3) | 9 | (9.1) | 0 | (0.0) | 0 (0.0) | 0 (0.0) | 10 (4.3) |
| Others | 0 | (0.0) | 15 | (15.2) | 7 | (29.2) | 1(50.0) | 0 (0.0) | 23 (10.0) |

BCS: Breast conserving surgery; MTX: Mastectomy
Note: Recurrence may involve multiple sites simultaneously, so the total percentages for recurrence sites in some patient groups exceed 100 .

The most common organ involved in distant metastasis was bone ( $47.2 \%$ ), followed by lung ( $36.0 \%$ ).
$65.8 \%$ of deaths occurred in patients with stage III and above breast cancer.

| Table 2.19 Organs involved in distant metastasis |  |  |
| :--- | ---: | ---: |
| Distant organs affected | Number | $(\%)$ |
| Mediastinal nodes | 25 | $(14.0)$ |
| Cervical nodes | 6 | $(3.4)$ |
| Bone | 84 | $(47.2)$ |
| Lung | 64 | $(36.0)$ |
| Liver | 48 | $(27.0)$ |
| Brain | 18 | $(10.1)$ |
| Others | 27 | $(15.2)$ |



Table 2.20 Characteristics of breast cancer-specific deaths

| Cancer stage | No. of cases <br> (Number, \%) | Survival time <br> (years) | Age at diagnosis <br> in years (range) | Biological subtypes, No. of cases <br> HeR2+ <br> Triple negative <br> ER-PR-HER2- |  |  |  |
| :---: | :---: | ---: | :---: | :---: | :---: | :---: | :---: |
| I | 4 | $(12.5)$ | $3.7-10.4$ | $34-57$ | 2 | 2 | 0 |
| IIA | 5 | $(15.6)$ | $1.9-20.5$ | $36-76$ | 0 | 1 | 2 |
| IIIA | 6 | $(18.8)$ | $1.1-8.2$ | $40-52$ | 4 | 1 | 1 |
| IIIB | 3 | $(9.4)$ | $0.8-5.0$ | $45-46$ | 0 | 2 | 1 |
| IIIC | 6 | $(18.8)$ | $0.8-4.9$ | $36-59$ | 3 | 0 | 2 |
| IV | 6 | $(18.8)$ | $1.1-3.3$ | $47-76$ | 4 | 2 | 0 |
| Unknown | 2 | $(6.3)$ | $3.3-21.8$ | $37-45$ | 0 | 0 | 0 |


[^0]:    HER2. Human epidermal growh factor receptor

[^1]:    C: Cyclophosphamide
    M: Methotrexate;
    F: 5FU;
    A:Adriamycin / Doxorubicin

    E: Epirubicin;
    T: Taxane (Docetaxel in TC and TAC, Paclitaxel or Docetaxel in AC+T):
    H: Trastuzumab;
    TCH: Docetaxel / Carboplatin /Trastuzumab or Paclitaxel / Carboplatin /Trastuzumab)

[^2]:    OT: Surgery; CT: Chemotherapy; BT:Targeted therapy; ET: Endocrine therapy; RT: Radiotherapy

